An ultrasensitive peroxidase DNAzyme-associated aptasensor that utilizes a target-triggered enzymatic signal amplification strategy.

نویسندگان

  • Rongzhan Fu
  • Kyungeun Jeon
  • Cheulhee Jung
  • Hyun Gyu Park
چکیده

By rationally employing enzymes for signal amplification, an ultrasensitive aptasensor was developed and successfully tested in a system designed to detect lysozyme with a detection limit of 0.1 fM. This detection limit is nearly three orders of magnitude lower than those of any previously reported DNAzyme-based aptasensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods.

In the present study, we fabricated an ultrasensitive sandwich-type electrochemical aptasensor for thrombin (TB) based on a triplex signal amplification strategy. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-DNAzyme) as well as blocking reagent-horseradish peroxidase (HRP) and iron telluride nanorods (FeTe NRs) could simultaneously amplify the electrochemical signal of t...

متن کامل

A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures† †Electronic supplementary information (ESI) available: Oligonucleotide sequences, DLS and zeta potential measurements, TEM images, absorption and fluorescence spectra, cytotoxicity assay and CLSM images. See DOI: 10.1039/c6sc04633a Click here for additional data file.

Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer l...

متن کامل

A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures.

Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer l...

متن کامل

A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine.

A functional nucleic acid-based amplification machine was designed for simple and label-free ultrasensitive colorimetric biosensing of microRNA (miRNA). The amplification machine was composed of a complex of trigger template and C-rich DNA modified molecular beacon (MB) and G-rich DNA (GDNA) as the probe, polymerase and nicking enzyme, and a dumbbell-shaped amplification template. The presence ...

متن کامل

A target-triggered exponential amplification-based DNAzyme biosensor for ultrasensitive detection of folate receptors.

We develop a new method for ultrasensitive detection of folate receptors (FRs) using a target-triggered isothermally exponential amplification reaction (EXPAR)-based DNAzyme biosensor. This method exhibits excellent specificity and high sensitivity with a detection limit as low as 0.23 fM and a large dynamic range of 6 orders of magnitude from 1 fM to 1 nM. It might be further applied for the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 47 35  شماره 

صفحات  -

تاریخ انتشار 2011